Scattering lifetime and high figure of merit in CsAgO predicted by methods beyond relaxation time approximation

Author:

Sharma Vineet Kumar,Kanchana VORCID,Gupta Mayanak KORCID,Mittal RanjanORCID

Abstract

Abstract The electronic transport behaviour of CsAgO has been discussed using the theory beyond relaxation time approximation from room temperature to 800 K. Different scattering mechanisms such as acoustic deformation potential scattering, impurity phonon scattering, and polar optical phonon scattering are considered for calculating carrier scattering rates to predict the absolute values of thermoelectric coefficients. The scattering lifetime is of the order of 10−14 s. The lattice thermal transport properties like lattice thermal conductivity and phonon-lifetime have been evaluated. The calculated lattice thermal conductivity equals 0.12 and 0.18 W mK−1 along ‘a’ and ‘c’ axes, respectively, at room temperature, which is very low compared to state-of-the-art thermoelectric materials. The anisotropy in the electrical conductivity indicates that the holes are favourable for the out-of-plane thermoelectrics while the electrons for in-plane thermoelectrics. The thermoelectric figure of merit for holes and electrons is nearly same with a value higher than 1 at 800 K for different doping concentrations. The value of the thermoelectric figure of merit is significantly higher than the existing oxide materials, which might be appealing for future applications in CsAgO.

Funder

Board of Research in Nuclear Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3