Abstract
Abstract
By introducing biquadratic together with usual bilinear ferromagnetic nearest neighbor exchange interaction in a square lattice, we find that the energy of the spin-wave mode is minimized at a finite wavevector for a vanishingly small Dzyaloshinskii–Moriya interaction (DMI), supporting a ground state with spin-spiral structure whose pitch length is unusually short as found in some of the experiments. Apart from reproducing the magnetic structures that can be obtained in a canonical model with nearest neighbor exchange interaction only, a numerical simulation of this model with further introduction of magnetic anisotropy and magnetic field predicts many other magnetic structures some of which are already observed in the experiments. Among many observed structures, nanoscale skyrmion even at vanishingly small DMI is found for the first time in a model. The model provides the nanoscale skyrmions of unit topological charge at zero magnetic field as well. We obtain phase diagrams for all the magnetic structures predicted in the model.
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献