Abstract
Abstract
Systematic measurements of the magnetic moment in dependence on temperature and magnetic field of hexagonal 6H-BaTiO3 + 0.04 BaO + x/2 Fe2O3 (0.005 ⩽ x ⩽ 0.05) ceramics were performed to study the influence of Fe ions on the magnetic properties. While the samples show Curie–Weiss paramagnetism for Fe concentrations ⩽1.0 mol%, antiferromagnetic interactions become manifest for 2.0 and 5.0 mol% iron. With increasing Fe content the antiferromagnetic interaction, which is assumed to be caused by a superexchange mechanism
F
e
T
i
(
1
)
3
+
−
O
O
(
2
)
2
−
−
F
e
T
i
(
2
)
3
+
, becomes stronger. At external magnetic fields smaller than 1 T a further, ferromagnetic interaction between Fe3+ ions is detected below 200 K. The interactions between Fe3+ ions in the samples with 2.0 and 5.0 mol% iron are also manifest in the EPR spectra by numerous lines with low intensity. Q-band EPR investigations of 5.0 mol% Fe doped single crystals confirm the existence of only one type of Fe3+–VO associates in the samples.
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献