An extended Stokes–Einstein model for condensed ionic water structures with topological complexity

Author:

Li Peizhao,Lu HaibaoORCID,Fu Yong-Qing

Abstract

Abstract ‘What is the structure of water?’ This has been a perplexing question for a long time and water structure with various phases is a great topic of research interest. Topological complexity generally occurs because hydrophilic ions strongly influence the size and shape of condensed water structures owing to their kosmotropic and chaotropic transitions. In this study, an extended Stokes–Einstein model incorporating Flory–Huggins free energy equation is proposed to describe the constitutive relationship between dynamic diffusion and condensed water structure with a topological complexity. The newly developed model provides a geometrical strategy of end-to-end distance and explores the constitutive relationship between condensed ionic water structures and their dynamic diffusion behaviors. A free-energy function is then formulated to study thermodynamics in electrolyte aqueous solution, in which the condensed ionic water structures undergo topologically complex changes. Finally, effectiveness of the proposed model is verified using both molecular dynamics simulations and experimental results reported in literature.

Funder

National Natural Science Foundation of China

International Exchange Grant through Royal Society and NFSC

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3