Electric field modulated electronic, thermoelectric and transport properties of 2D tetragonal silicene and its nanoribbons

Author:

Mondal Niladri Sekhar,Mondal Rajkumar,Bedamani Singh N,Nath SubhadipORCID,Jana DebnarayanORCID

Abstract

Abstract Using both first principles and analytical approaches, we investigate the role of a transverse electric field in tuning the electrical, thermoelectric, optical and transport properties of a buckled tetragonal silicene (TS) structure. The transverse electric field transforms the linear spectrum to parabolic at the Fermi level and opens a band gap. The gap is similar at the two Dirac points present in the irreducible Brillouin zone of the TS structure and increases in proportion to the applied field strength. However, a sufficiently strong electric field converts the system into a metallic one. A comparable band opening is also seen in the TS nanoribbons. Electric field-induced semiconducting nature improves its thermoelectric properties. Estimated Debye temperature reveals its superiority over graphene in terms of thermoelectric performance. The optical response of the structures is very asymmetric. Large values of imaginary and real components of the dielectric function are seen. The absorption frequency lies in the UV region. Plasma frequencies are identified and are red-shifted with the applied field. The current–voltage characteristics of the symmetric type nanoribbons show oscillation in current whereas the voltage-rectifying capability of anti-symmetric type nanoribbons under a transverse electric field is interesting.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3