Physics mechanisms underlying the optimization of coherent heat transfer across width-modulated nanowaveguides with calculations and machine learning

Author:

Stefanou Antonios-DimitriosORCID,Zianni XanthippiORCID

Abstract

Abstract Optimization of heat transfer at the nanoscale is necessary for efficient modern technology applications in nanoelectronics, energy conversion, and quantum technologies. In such applications, phonons dominate thermal transport and optimal performance requires minimum phonon conduction. Coherent phonon conduction is minimized by maximum disorder in the aperiodic modulation profile of width-modulated nanowaveguides, according to a physics rule. It is minimized for moderate disorder against physics intuition in composite nanostructures. Such counter behaviors call for a better understanding of the optimization of phonon transport in non-uniform nanostructures. We have explored mechanisms underlying the optimization of width-modulated nanowaveguides with calculations and machine learning, and we report on generic behavior. We show that the distribution of the thermal conductance among the aperiodic width-modulation configurations is controlled by the modulation degree irrespective of choices of constituent material, width-modulation-geometry, and composition constraints. The efficiency of Bayesian optimization is evaluated against increasing temperature and sample size. It is found that it decreases with increasing temperature due to thermal broadening of the thermal conductance distribution. It shows weak dependence on temperature in samples with high discreteness in the distribution spectrum. Our work provides new physics insight and indicates research pathways to optimize heat transfer in non-uniform nanostructures.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3