Abstract
Abstract
Interfacial Dzyaloshinskii–Moriya interaction (i-DMI) exists in the film materials with inversion symmetry breaking, which can stabilize a series of nonlinear spin structures and control their chirality, such as Néel-type domain wall, magnetic skyrmion and spin spiral. In addition, the strength and chirality of i-DMI are directly related to the dynamic behavior of these nonlinear spin structures. Therefore, regulating the strength and chirality of i-DMI not only has an important scientific significance for enriching spintronics and topological physics, but also has a significant practical value for constructing a new generation of memorizer, logic gate, and brain-like devices with low-power. This review summarizes the research progress on the regulation of i-DMI in ferromagnetic films and provides some prospects for future research.
Funder
National Key Research and Development Program of China
Science and Technology Innovation Team Program of Foshan
National Science Foundation of China