Crystal structure and phase transition of TlReO4: a combined experimental and theoretical study

Author:

Mondal S,Vaitheeswaran GORCID,Kennedy Brendan JORCID,Chay Clarissa,Injac Sean,Errandonea DanielORCID

Abstract

Abstract The present work describes a density-functional theory (DFT) study of TlReO4 in combination with powder x-ray diffraction experiments as a function of temperature and Raman measurements at ambient temperature. X-ray diffraction measurements reveal three different structures as a function of temperature. A monoclinic structure (space group P21/c) is observed at room temperature while two isostructural tetragonal structures (space group I41/a) are found at low- and high-temperature. In order to complement the experimental results first-principles DFT calculations were performed to compute the structural energy differences. From the total energies it is evident that the monoclinic structure has the lowest total energy when compared to the orthorhombic structure, which was originally proposed to be the structure at room temperature, which agrees with our experiments. The structural and vibrational properties of the low- and room-temperature phase of TlReO4 have been calculated using DFT. Inclusion of van der Waals correction to the standard DFT exchange correlation functional is found to improve the agreement with the observed structural and vibrational properties. The Born effective charge of these phases has also been studied which shows a combination of ionic and covalent nature, resembling metavalent bonding. Calculations of zone-center phonon frequencies lead to the symmetry assignment of previously reported low-temperature Raman modes. We have determined the frequencies of the eight infrared-active, 13 Raman-active and three silent modes of low-temperature TlReO4 along with 105 infrared-active and 108 Raman-active modes for room-temperature TlReO4. Phonons of these two phases of TlReO4 are mainly divided into three regions which are below 150 cm−1 due to vibration of whole crystal, 250 to 400 cm−1 due to wagging, scissoring, rocking and twisting and above 900 cm−1 due to stretching in ReO4 tetrahedron. The strongest infrared peak is associated to the internal asymmetric stretching of ReO4 whereas the strongest Raman peak is associated to the internal symmetric stretching of ReO4. We have also measured the room-temperature Raman spectra of monoclinic TlReO4 identifying up to 28 modes. This Raman spectrum has been interpreted by comparison with the previously reported Raman frequencies of the low-temperature phase and our calculated Raman frequencies of low- and room-temperature phases of TlReO4.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3