Enhanced shift current bulk photovoltaic effect in ferroelectric Rashba semiconductor α-GeTe: ab initio study from three- to two-dimensional van der Waals layered structures

Author:

Tiwari Rajender PrasadORCID

Abstract

Abstract The ferroelectric Rashba semiconductors (FERSCs) are endowed with a unique combination of ferroelectricity and the spin degree of freedom, resulting in a long carrier lifetime and impressive bulk photovoltaic (BPV) efficiency that reached 25% in organometal halide perovskites. The BPV efficiency can be further improved by using low-dimensional ferroelectrics however, it is inhibited by the ferroelectric instability in low-dimensional perovskites and toxicity along with phase instability of the lead-halide perovskites. To address these challenges, the α-GeTe could be of great importance which is the simplest known lead-free FERSC with an intrinsic layered structure. Therefore, in this work, we investigate the BPV properties of three- to two-dimensional van der Waals structures of α-GeTe by calculating the shift current (SHC). We predict that the mono (1.56 Å) and bi-layers (5.44–6.14 Å) α-GeTe with the buckled honeycomb structure are dynamically stable and possess the characteristic features of the bulk up to the nanoscale limit. The SHC of ∼70 μA V−2 is calculated in bulk α-GeTe which is 20 times larger than that obtained in organometal halides in the visible light. The SHC increases with decreasing the number of layers, reaching a maximum amplitude of ∼300 μA V−2 at 2.67 eV in the monolayer which is more than double that obtained in monolayer GeS. We find that the SHC in monolayer α-GeTe can be further enhanced and redshifted by applying a compressive strain; which is correlated with the strong absorption of the xx-polarized light, stimulated by the more delocalized p x /y orbital character of the density of states. Furthermore, in the bilayer structures, the magnitude of the SHC is sensitive to the layers’ stacking arrangement and a maximum SHC (∼250 μA V−2) can be achieved with an AB-type stacking arrangement. Combining these results with the benefits of being environmental-friendly material makes α-GeTe a good candidate for next-generation solar cells application.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3