Four-phonon scattering of so-As and improvement of the thermoelectric properties by increasing the buckling height

Author:

Sun YongORCID,Shen Hui-Xue,Duan Man-Yi,Zhang TianORCID,Mu Yi,Cheng CaiORCID

Abstract

Abstract In recent years, more and more thermoelectric (TE) materials have been discovered as the research boom of TE materials advances. However, due to the low conversion efficiency, most of the current TE materials cannot meet the commercial demand. The low-dimensional nanomaterials are promising to break the current status quo of low conversion efficiency of TE materials. Here, we predicted a stable two-dimensional TE material, namely so-As, based on density functional theory. The so-As has an ultra-low lattice thermal conductivity, κl = 1.829 W m−1 K−1 at 300 K, and when the temperature rises to 700 K the κl is only 0.788 W m−1 K−1 . This might be caused by the strong anharmonic interaction among the so-As phonon and the out-of-plane vibration of the low-frequency acoustic modes. Moreover, the maximum ZT value of the p-type so-As is 0.18 at room temperature (0.45 at 700 K), while that of the n-type can even reach 0.75 at 700 K. In addition, we have also studied the difference between the four- and three-phonon scattering rates. The increase of scattering channels leads to the ultra-low κl , which is only 3.33 × 10−4W m−1 K−1 at room temperature, showing an almost adiabatic property. Finally, we adjust the TE properties of so-As by changing the buckling height. With the buckling height is increased by 2%, the scattering rate of so-As is extremely high. When T is 700 K, the maximum ZT of the n-type is 0.94 (p-type can also reach 0.7), which is 25% higher than the pristine one. Our work reveals the impact of buckling height on the TE figure of merit, which provides a direction for future search and regulation of the high ZT TE materials.

Funder

Natural Science Foundation of Sichuan Province of China

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3