Simplified Green’s function for surface waves in quasi-incompressible elastic plates with application to elastography

Author:

Benech NicolásORCID,Camargo Andrés,Negreira Carlos

Abstract

Abstract Surface wave elastography is a growing method to estimate the elasticity in soft solids. It is particularly useful in the case of agrifoods like meat, cheese, or fruits because it does not require major infrastructure or large equipment and could be developed in portable devices. However, estimating the shear elastic properties from surface wave measurements is not straightforward. The shear wavelength in those materials is cm sized for the excitation frequencies usually employed in elastography (∼102 Hz), and the size of samples is comparable to it. Thus, the surface wave speed is frequency dependent with no direct relation to the shear wave speed. In this work we propose a simplified Green’s function for soft solid elastic plates which allows to retrieve the shear elasticity from near field measurements. The model is compared with experimental results obtained in agar–gelatin phantoms and food samples (cheese and bovine liver). The results show a good overall agreement although improvements can be achieved by incorporating diffraction and viscosity to the model.

Funder

PEDECIBA

Espacio Interdisciplinario, Universidad de la República, Uruguay

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference42 articles.

1. Future of breast elastography;Barr;Ultrasonography,2019

2. Review of liver elastography guidelines;Ferraioli;J. Ultrasound Med.,2019

3. Ultrasound elastography of the prostate: state of the art;Correas;Diag. Interventional Imaging,2013

4. In vivo breast tumor detection using transient elastography;Bercoff;Ultrasound Med. Biol.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3