Transport and electrical properties of cryogenic thermoelectric FeSb2: the effect of isoelectronic and hole doping

Author:

Gujjar Deepak,Gujjar Sunidhi,Malik V KORCID,Kandpal Hem CORCID

Abstract

Abstract Thermoelectric materials operating at cryogenic temperatures are in high demand for efficient cooling and power generation in applications ranging from superconductors to quantum computing. The narrow band-gap semiconductor FeSb2, known for its colossal Seebeck coefficient, holds promise for such applications, provided its thermal conductivity value can be reduced. This study investigates the impact of isoelectronic substitution (Bi) and hole doping (Pb) at the Sb site on the transport properties of FeSb2, with a particular focus on thermal conductivity (κ). Polycrystalline FeSb2 powder, along with Bi- and Pb-doped samples, were synthesized using a simple co-precipitation approach, followed by thermal treatment in an H2 atmosphere. XRD and SEM analysis confirms the formation of the desired phase pre- and post-consolidation using spark plasma sintering. The consolidation process resulted in a high compaction density and the formation of submicrometer-sized grains, as substantiated by electron backscattered diffraction analysis. Substituting 1% of Bi and Pb at the Sb site successfully suppressed the thermal conductivity (κ) from ∼15 W (m·K)−1 in pure FeSb2 to ∼10 and ∼8.7 W (m·K)−1, respectively. Importantly, resistivity measurements revealed a metal-to-insulator transition at around 6.5 K in undoped FeSb2 and isoelectronically Bi-substituted FeSb2, suggesting the existence of metallic surface states and provides valuable evidence for the perplexing topological behavior exhibited by FeSb2.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3