Concentration effects on the local structures and electronic properties of Er x BaY2− x F8: a first-principles study

Author:

Xiao YangORCID,Tang Bin,Wu Zhen-hai,Ju MengORCID,Yang Jin-ni

Abstract

Abstract Er3+ doped barium yttrium fluoride (BaY2F8) crystal has gained long-term attention due to its great potential in laser and medical device applications. However, the local structures of Er3+ doped BaY2F8 system (Er:BYF) remain uncertain, and the effect of doping concentration on structures and properties is unknown. Therefore, in this study, the first-principles study of the structural evolution of Er x BaY2−x F8 (x = 0.125, 0.25) crystals was carried out. By means of density functional theory and particle swarm optimization algorithm, the stable structures of Er:BYF crystals with two different concentrations are shown as standard monoclinic structures with P2 symmetry for the first time. The impurity Er3+ ions successfully enter the main lattice, replacing the Y3+ ions, and forming a [ErF8]5− polyhedron with C 2 point group symmetry. By calculating the electronic properties, the band gap values of the two structures are significantly reduced compared with that of pure BaY2F8 crystal. However, the conduction band does not break through the Fermi level, and the crystals still maintain the insulation characteristic. According to the calculation of the electron local density function, we conclude that Er–F and Y–F in Er:BYF are connected by ionic bonds. These results fill a theoretical gap in the study of Er:BYF crystals and provide inspiration for structural evolution and material design at different doping concentrations.

Funder

the Chongqing Talent Plan for Young TopNotch Talents

Sichuan Science and Technology Program

the natural science starting project of SWPU

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3