Operando XAFS investigation on the effect of ash deposition on three-way catalyst used in gasoline particulate filters and the effect of the manufacturing process on the catalytic activity

Author:

Panchal MonikORCID,Callison JuneORCID,Skukauskas VainiusORCID,Gianolio DiegoORCID,Cibin GiannantonioORCID,York Andrew P EORCID,Schuster Manfred EORCID,Hyde Timothy IORCID,Collier Paul,Catlow C Richard AORCID,Gibson Emma KORCID

Abstract

Abstract Platinum group metals such as palladium and rhodium based catalysts are currently being implemented in gasoline particulate filter (GPF) autoexhaust after treatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. This operando study follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2 and O2 was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 °C. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 °C post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance.

Funder

Engineering and Physical Sciences Research Council

Diamond Light Source

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3