Kagome surface states and weak electronic correlation in vanadium-kagome metals

Author:

Ding Jianyang,Zhao Ningning,Tao Zicheng,Huang Zhe,Jiang ZhichengORCID,Yang Yichen,Cho Soohyun,Liu Zhengtai,Liu Jishan,Guo YanfengORCID,Liu KaiORCID,Liu ZhonghaoORCID,Shen DaweiORCID

Abstract

Abstract RV 6 Sn 6 (R = Y and lanthanides) with two-dimensional vanadium-kagome surface states is an ideal platform to investigate kagome physics and manipulate the kagome features to realize novel phenomena. Utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy and first-principles calculations, we report a systematical study of the electronic structures of RV 6 Sn 6 (R = Gd, Tb, and Lu) on the two cleaved surfaces, i.e. the V- and RSn1-terminated (001) surfaces. The calculated bands without any renormalization match well with the main ARPES dispersive features, indicating the weak electronic correlation in this system. We observe ‘W’-like kagome surface states around the Brillouin zone corners showing R-element-dependent intensities, which is probably due to various coupling strengths between V and RSn1 layers. Our finding suggests an avenue for tuning electronic states by interlayer coupling based on two-dimensional kagome lattices.

Funder

NSFC

Beamline of the Shanghai Synchrotron Radiation Facility

Science and Technology on Surface Physics and Chemistry Laboratory

Key R&D Program of China

Physical Laboratory of High-Performance Computing

Renmin University of China

Outstanding Innovative Talents Cultivation Funded Programs

CAS Interdisciplinary Innovation Team

Beijing Natural Science Foundation

Natural Science Foundation of Shanghai

Shanghai Science and Technology Innovation Action Plan

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3