Ratio of 4:1 between ZnGeAs2 and MnAs phases in a single composite and its impact on the structure-driven magnetoresistance

Author:

Arslanov T RORCID,Zalibekov U Z,Ashurov G G,Losanov Kh Kh,Zhao X,Dai BORCID,Ril A I

Abstract

Abstract A strong influence of the lattice degree of freedom on magnetoresistance (MR) under high pressure underlies the conception of ‘structure-driven’ magnetoresistance (SDMR). In most magnetic or topological materials, the suppression of MR with increasing pressure is a general trend, while for some magnetic composites the MR enhances and even shows unusual behavior as a consequence of structural transition. Here we investigated the SDMR in the composite material based on the ZnGeAs2 semiconductor matrix and MnAs magnetic inclusions in a phase ratio of 4:1. At ambient pressure, its magnetic and transport properties are governed by MnAs inclusions, i.e. it shows a Curie temperature T C≈ 320 K and metallic-like conductivity. Under high pressure, the low-field room temperature MR undergoes multiple changes in the pressure range up to 7.2 GPa. The structural transition in the ZnGeAs2 matrix has been found at ∼6 GPa, slightly lower than in the pure ZnGeAs2 (6.2 GPa). The huge SDMR as high as 85% at 6.8 GPa and 2.5 kOe, which contains both positive and negative MR components, is accompanied by a pressure-induced metallic-like-to-semiconductor-like transition and the enhanced ferromagnetic order of MnAs inclusions. This observation offers a competing mechanism between the robust extrinsic ferromagnetism and high-pressure electronic properties of ZnGeAs2.

Funder

Russian Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3