A DFT study of electron–phonon interactions for the C2CN and VNNB defects in hexagonal boron nitride: investigating the role of the transition dipole direction

Author:

Sharman KORCID,Golami O,Wein S CORCID,Zadeh-Haghighi HORCID,Rocha C GORCID,Kubanek A,Simon CORCID

Abstract

Abstract Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest due to observations of ultra-bright emission made at room temperature. The expectation that solid-state emitters exhibit broad zero-phonon lines at elevated temperatures has been put in question by recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature. All decoupled emitters produce photons that are directed in-plane, suggesting that the dipoles are perpendicular to the h-BN plane. Motivated by the promise of an efficient and scalable source of indistinguishable photons that can operate at room temperature, we have developed an approach using density functional theory (DFT) to determine the electron-phonon coupling for defects that have in- and out-of-plane transition dipole moments. Our DFT calculations reveal that the transition dipole for the C 2 C N defect is parallel to the h-BN plane, and for the V N N B defect is perpendicular to the plane. We calculate both the phonon density of states and the electron–phonon matrix elements associated with the h-BN defective structures. We find no indication that an out-of-plane transition dipole by itself will result in the low electron–phonon coupling that is expected to produce FT-limited photons at room temperature. Our work provides direction to future DFT software developments and adds to the growing list of calculations relevant to researchers in the field of solid-state quantum information processing.

Funder

Alberta Innovates

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3