Effects of an external electric field on the electronic properties and optical excitations of germanane and silicane monolayers

Author:

Zaabar F,Mahrouche F,Mahtout S,Rabilloud FORCID,Rezouali KORCID

Abstract

Abstract Using density functional theory in conjunction with many-body perturbation theory, we theoretically investigated the electronic structures of monolayers germanane and silicane in an applied out-of-plane uniform electric field. Our results show that although the band structures of both monolayers are affected by the electric field, the band gap width cannot be reduced to zero even for high field-strengths. Moreover, excitons are shown to be robust under electric fields, so that Stark shifts for the fundamental exciton peak is only of the order of a few meV for fields of 1 V Å−1. The electric field has also no significant effect on electron probability distribution, as the exciton dissociation into free electron–hole pairs is not observed even at high electric field strengths. Franz-Keldysh effect is also studied in monolayers germanane and silicane. We found that, due to the shielding effect, the external field is prevented to induce absorption in the spectral region below the gap and only above-gap oscillatory spectral features are allowed. One can benefit from such a characteristic where the absorption near the band edge is not altered by the presence of an electric field, especially since these materials have excitonic peaks in the visible range.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3