Understanding magnetocrystalline anisotropy based on orbital and quadrupole moments

Author:

Miura YoshioORCID,Okabayashi JunORCID

Abstract

Abstract Understanding magnetocrystalline anisotropy (MCA) is fundamentally important for developing novel magnetic materials. Therefore, clarifying the relationship between MCA and local physical quantities observed by spectroscopic measurements, such as the orbital and quadrupole moments, is necessary. In this review, we discuss MCA and the distortion effects in magnetic materials with transition metals (TMs) based on the orbital and quadrupole moments, which are related to the spin-conserving and spin-flip terms in the second-order perturbation calculations, respectively. We revealed that orbital moment stabilized the spin moment in the direction of the larger orbital moment, while the quadrupole moment stabilized the spin moment along the longitudinal direction of the spin-density distribution. The MCA of the magnetic materials with TMs and their interfaces can be determined from the competition between these two contributions. We showed that the perpendicular MCA of the face-centered cubic Ni with tensile tetragonal distortion arose from the orbital moment anisotropy, whereas that of Mn-Ga alloys originated from the quadrupole moment of spin density. In contrast, in the Co/Pd(111) multilayer and Fe/MgO(001), both the orbital moment anisotropy and quadrupole moment of spin density at the interfaces contributed to the perpendicular MCA. Understanding the MCA of magnetic materials and interfaces based on orbital and quadrupole moments is essential to design MCA of novel magnetic applications.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3