Improved band gaps and structural properties from Wannier–Fermi–Löwdin self-interaction corrections for periodic systems

Author:

Shinde RavindraORCID,Yamijala Sharma S R K CORCID,Wong Bryan MORCID

Abstract

Abstract The accurate prediction of band gaps and structural properties in periodic systems continues to be one of the central goals of electronic structure theory. However, band gaps obtained from popular exchange–correlation (XC) functionals (such as LDA and PBE) are severely underestimated partly due to the spurious self-interaction error (SIE) inherent to these functionals. In this work, we present a new formulation and implementation of Wannier function-derived Fermi–Löwdin (WFL) orbitals for correcting the SIE in periodic systems. Since our approach utilizes a variational minimization of the self-interaction energy with respect to the Wannier charge centers (WCC), it is computationally more efficient than the HSE hybrid functional and other self-interaction corrections that require a large number of transformation matrix elements. Calculations on several (17 in total) prototypical molecular solids, semiconductors, and wide-bandgap materials show that our WFL self-interaction correction approach gives better band gaps and bulk moduli compared to semilocal functionals, largely due to the partial removal of self-interaction errors.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3