Electronic and crystal structures of LnFeAsO1−x H x (Ln = La, Sm) studied by x-ray absorption spectroscopy, x-ray emission spectroscopy, and x-ray diffraction: II pressure dependence

Author:

Yamamoto Yoshiya,Yamaoka HitoshiORCID,Kawai Takuma,Yoshida Masahiro,Yamaura Jun-ichiORCID,Ishii Kenji,Onari Seiichiro,Uozumi Takayuki,Hariki Atsushi,Taguchi Munetaka,Kobayashi Kensuke,Lin Jung-Fu,Hiraoka Nozomu,Ishii Hirofumi,Tsuei Ku-Ding,Okanishi Hiroshi,Iimura Soshi,Matsuishi Satoru,Hosono Hideo,Mizuki Jun’ichiro

Abstract

Abstract We examine electronic and crystal structures of iron-based superconductors LnFeAsO1−x H x (Ln = La, Sm) under pressure by means of x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), and x-ray diffraction. In LaFeAsO the pre-edge peak on high-resolution XAS at the Fe-K absorption edge gains in intensity on the application of pressure up to 5.7 GPa and it saturates in the higher pressure region. We found integrated-absolute difference values on XES for Ln = La, corresponding to a spin state, decline on the application of pressure, and then it is minimized when the T c approaches the maximum at around 5 GPa. In contrast, such the optimum value was not detected for Ln = Sm. We reveal that the superconductivity is closely related to the lower spin state for Ln = La unlike Sm case. We observed that As height from the Fe basal plane and As–Fe–As angle on the FeAs4 tetrahedron for Ln = La deviate from the optimum values of the regular tetrahedron in superconducting (SC) phase, which has been widely accepted structural guide to SC thus far. In contrast, the structural parameters were held near the optimum values up to ∼15 GPa for Ln = Sm.

Funder

Grants in Aid for Scientific Research from the Japan Society for the Promotion of Science

MEXT Elements Strategy Initiative to Form Core Research Center

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Superconductivity and magnetism in a novel La0.85Ga0.15FeAsO compound;Physica C: Superconductivity and its Applications;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3