Broadband critical dynamics in disordered lead-based perovskites*

Author:

Stock CORCID,Songvilay MORCID,Gehring P M,Xu Guangyong,Roessli B

Abstract

Abstract Materials based on the cubic perovskite unit cell continue to provide the basis for technologically important materials with two notable recent examples being lead-based relaxor piezoelectrics and lead-based organic–inorganic halide photovoltaics. These materials carry considerable disorder, arising from site substitution in relaxors and molecular vibrations in the organic–inorganics, yet much of our understanding of these systems derives from the initial classic work of Prof. Roger A Cowley, who applied both theory and neutron scattering methods while at Chalk River Laboratories to the study of lattice vibrations in SrTiO3. Neutron scattering continues to play a vital role in characterizing lattice vibrations in perovskites owing to the simple cross section and the wide range of energy resolutions achievable with current neutron instrumentation. We discuss the dynamics that drive the phase transitions in the relaxors and organic–inorganic lead-halides in terms of neutron scattering and compare them to those in phase transitions associated with a ‘central peak’ and also a soft mode. We review some of the past experimental work on these materials and present new data from high-resolution time-of-flight backscattering spectroscopy taken on organic–inorganic perovskites. We will show that the structural transitions in disordered lead-based perovskites are driven by a broad frequency band of excitations.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3