Abstract
Abstract
The interiors of giant icy planets depend on the properties of hot, dense mixtures of the molecular ices water, ammonia, and methane. Here, we discuss results from first-principles molecular dynamics simulations up to 500 GPa and 7000 K for four different ammonia–water mixtures that correspond to the stable stoichiometries found in solid ammonia hydrates. We show that all mixtures support the formation of plastic and superionic phases at elevated pressures and temperatures, before eventually melting into molecular or ionic liquids. All mixtures’ melting lines are found to be close to the isentropes of Uranus and Neptune. Through local structure analyses we trace and compare the evolution of chemical composition and longevity of chemical species across the thermally activated states. Under specific conditions we find that protons can be less mobile in the fluid state than in the (colder, solid) superionic regime.
Funder
Engineering and Physical Sciences Research Council
University of Edinburgh Deans Vacation Scholarship
UK National Supercomputer Service
Subject
Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献