Understanding the Seebeck coefficient of LaNiO3 compound in the temperature range 300–620 K

Author:

Khatun ArzenaORCID,Sk ShamimORCID,Pandey Sudhir KORCID

Abstract

Abstract Transition metal oxides have been attracted much attention in thermoelectric community from the last few decades. In the present work, we have synthesized LaNiO3 by a simple solution combustion process. To analyse the crystal structure and structural parameters we have used Rietveld refinement method wherein FullProf software is employed. The room temperature x-ray diffraction indicates the rhombohedral structure with space group R 3 ¯ c (No. 167). The refined values of lattice parameters are a = b = c = 5.4071 Å. Temperature dependent Seebeck coefficient (S) of this compound has been investigated by using experimental and computational tools. The measurement of S is conducted in the temperature range 300–620 K. The measured values of S in the entire temperature range have negative sign that indicates n-type character of the compound. The value of S is found to be ∼−8 μV/K at 300 K and at 620 K this value is ∼−12 μV/K. The electronic structure calculation is carried out using DFT + U method due to having strong correlation in LaNiO3. The calculation predicts the metallic ground state of the compound. Temperature dependent S is calculated using BoltzTraP package and compared with experiment. The best matching between experimental and calculated values of S is observed when self-interaction correction is employed as double counting correction in spin-polarized DFT + U (=1 eV) calculation. Based on the computational results maximum power factors are also calculated for p-type and n-type doping of this compound.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3