Strain aided drastic reduction in lattice thermal conductivity and improved thermoelectric properties in Janus MXenes

Author:

Murari HimanshuORCID,Shaw Swati,Ghosh SubhradipORCID

Abstract

Abstract Surface and strain engineering are among the cheaper ways to modulate structure property relations in materials. Due to their compositional flexibilities, MXenes, the family of two-dimensional materials, provide enough opportunity for surface engineering. In this work, we have explored the possibility of improving thermoelectric efficiency of MXenes through these routes. The Janus MXenes obtained by modifications of the transition metal constituents and the functional groups passivating their surfaces are considered as surface engineered materials on which bi-axial strain is applied in a systematic way. We find that in the three Janus compounds Zr2COS, ZrHfCO2 and ZrHfCOS, tensile strain modifies the electronic and lattice thermoelectric parameters such that the thermoelectric efficiency can be maximised. A remarkable reduction in the lattice thermal conductivity due to increased anharmonicity and elevation in Seebeck coefficient are obtained by application of moderate tensile strain. With the help of first-principles electronic structure method and semi-classical Boltzmann transport theory we analyse the interplay of structural parameters, electronic and dynamical properties to understand the effects of strain and surface modifications on thermoelectric properties of these systems. Our detailed calculations and in depth analysis lead not only to the microscopic understanding of the influences of surface and strain engineering in these three systems, but also provide enough insights for adopting this approach and improve thermoelectric efficiencies in similar systems.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3