Electronic transport through a driven quantum wire: possible tuning of junction current, circular current and induced local magnetic field

Author:

Ganguly SudinORCID,Maiti Santanu KORCID

Abstract

Abstract We propose a new route of getting controlled electron transmission through a molecular wire having a single loop geometry, by irradiating the loop with an arbitrarily polarized light. Along with conventional junction current, a new current called bias driven circular current can be established in the loop under certain conditions depending on the junction configuration. This current, on the other hand, induces a strong magnetic field that can even reach to few tesla. All the physical phenomena can be regulated selectively by adjusting the irradiation parameters. In addition, we put forward another new route of regulating transport behavior by introducing a new path due to the proximity of the contact electrodes for a typical junction configuration. Employing a tight-binding framework, we include the effect of light irradiation within a minimal coupling scheme following the well known Floquet ansatz. Using the wave-guide theory we compute two-terminal transmission probability, and the currents are determined through the Landauer–Büttiker formalism. The present analysis may be utilized to investigate transport phenomena in any other molecular wires as well as tailor-made geometries having simple and/or complex loop sub-structures.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3