Gaussian and Gaussian-pulsed-like Fermi velocity graphene structures

Author:

García-Cervantes HORCID,Escalera Santos G JORCID,García-Rodríguez F JORCID,Rodríguez-González RORCID,Rodríguez-Vargas IORCID

Abstract

Abstract Gaussian and Gaussian-related structures are quite attractive due to its versatility to modulate the electronic transport, including its possibility as electron filters. Here, we show that these non-conventional profiles are not the exception when dealing with Fermi velocity barriers in monolayer graphene. In particular, we show that Gaussian Fermi velocity graphene barriers (G-FVGBs) and Gaussian-pulsed-like Fermi velocity graphene superlattices (GPL-FVGSLs) can serve as electron band-pass filters and oscillating conductance structures. We reach this conclusion by theoretically studying the transmission and transport properties of the mentioned structures. The study is based on the continuum model, the transfer matrix method and the Landauer–Büttiker formalism. We find nearly flat transmission bands or pass bands for G-FVGBs modulable through the system parameters. The pass bands improve as the maximum ratio of Fermi velocities ( ξ m a x ) increases, however its omnidirectional range is reduced. These characteristics result in a decaying conductance (integrated transmission) with ξ m a x . The integrated transmission remains practically unaltered with the size of the system due to the saturation of the electron pass band filtering. In the case of GPL-FVGSLs the GPL profile results in regions of high transmission probability that can merge as flat transmission minibands if the pulse fraction and the superlattice parameters are appropriately tuned. The GPL profile also results in conductance (integrated transmission) oscillations that can be multiplied or reduced in number by adjusting the pulse fraction as well as the superlattice parameters.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3