Abstract
Abstract
In this paper, the electrical and spin properties of mono- and bilayer HfSSe in the presence of a vertical electric field are studied. The density functional theory is used to investigate their properties. Fifteen different stacking orders of bilayer HfSSe are considered. The mono- and bilayer demonstrate an indirect bandgap, whereas the bandgap of bilayer can be effectively controlled by the electric field. While the bandgap of bilayer closes at large electric fields and a semiconductor to metal transition occurs, the effect of a normal electric field on the bandgap of the monolayer HfSSe is quite weak. Spin–orbit coupling causes band splitting in the valence band and Rashba spin splitting in the conduction band of both mono- and bilayer structures. The band splitting in the valence band of the bilayer is smaller than a monolayer, however, the vertical electric field increases the band splitting in bilayer one. The stacking configurations without mirror symmetry exhibit Rashba spin splitting which is enhanced with the electric field.
Subject
Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献