Coupled harmonic oscillator models for correlated plasmons in one-dimensional and quasi-one-dimensional systems

Author:

Khandelwal AarushiORCID,Mohammad Tashrif ShazedORCID,Rusydi AndrivoORCID

Abstract

Abstract A new phenomenon of correlated plasmons was first observed in the insulating phase of the Sr1−x Nb1−y O3+δ family (Asamara et al 2017 Nat. Commun. 8 15271). The correlated plasmons are tunable, have multiple plasmonic frequencies, and exhibit low loss—making them desirable in numerous plasmonic applications. However, their fundamental mechanism is yet to be explored. While conventional plasmons can be understood solely by considering long-range interactions, unconventional correlated plasmons arise in correlated electron systems and require consideration of the short-range interactions. Here, we report how the interplay of short-range and long-range interactions determines the correlated plasmon phenomena through a coupled harmonic oscillator model of both 1D and quasi-1D systems. In each system, the impact of various physical parameters like the number of oscillators, energy scale, free electron scattering parameter, quasi-particle concentration, charges, effective masses, and Coulomb interaction strengths are explored to gain an understanding of their impact on the complex dielectric function and loss function. We study both cases where the parameters are the same for all quasi-particles and where effective mass, Coulomb interaction strength, and charge are varied for individual quasi-particles. In an extended model of the quasi-1D system, we study both cases where the rung symmetry of all parameters is conserved and where it is broken. When rung symmetry is conserved, the overall trends in optical and plasmonic peaks are the same as the 1D model, though the peaks tend to shift to higher energies and amplitudes. When rung symmetry is broken, the quasi-1D behavior deviates significantly from the 1D model, including an increase in the maximum possible number of optical and plasmonic peaks. Overall, our results demonstrate the significance of the interplay of short-range and long-range interactions in determining the correlated plasmons and identifying how various parameters can be used to tune the resulting plasmons.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3