Abstract
Abstract
The application of strain to 2D materials allows manipulating the electronic, magnetic, and thermoelectric properties. These physical properties are sensitive to slight variations induced by tensile and compressive strain and the uniaxial strain direction. Herein, we take advantage of the reversible semiconductor-metal transition observed in certain monolayers to propose a hetero-bilayer device. We propose to pill up phosphorene (layered black phosphorus) and carbon monosulfide monolayers. In the first, such transition appears for positive strain, while the second appears for negative strain. Our first-principle calculations show that depending on the direction of the applied uniaxial strain; it is possible to achieve reversible control in the layer that behaves as an electronic conductor while the other layer remains as a thermal conductor. The described strain-controlled selectivity could be used in the design of novel devices.
Funder
FONDECYT
Universidad Técnica Federico Santa María
Subject
Condensed Matter Physics,General Materials Science