Metadynamics molecular dynamics and isothermal Brownian-type molecular dynamics simulations for the chiral cluster Au18

Author:

Lim C CORCID,Lai S KORCID

Abstract

Abstract In an effort to gain insight into enantiomeric transitions, their transition mechanism, time span of transitions and distribution of time spans etc, we performed molecular dynamics (MD) simulations on chiral clusters Au10, Au15 and Au18, and found that viable reaction coordinates can be deduced from simulation data for enlightening the enantiomeric dynamics for Au10 and Au15, but not so for Au18. The failure in translating the Au18-L ⇌ Au18-R transitions by MD simulations has been chalked up to the thermal energy k B T at 300 K being much lower than energy barriers separating the enantiomers of Au18. Two simulation strategies were taken to resolve this simulation impediment. The first one uses the well-tempered metadynamics MD (MMD) simulation, and the second one adeptly applies first a somewhat crude MMD simulation to locate a highly symmetrical isomer Au18S and subsequently employed it as initial configuration in the MD simulation. In both strategies, we work in collective variable space of lower dimensionality. The well-tempered MMD simulation tactic was carried out aiming to offer a direct verification of Au18 enantiomers, while the tactic to conduct MMD/MD simulations in two consecutive simulation steps was intended to provide an indirect evidence of the existence of enantiomers of Au18 given that energy barriers separating them are much higher than ca. k B T at 300 K. This second tactic, in addition to confirming indirectly Au18-L and Au18-R starting from the symmetrical cluster Au18S, the simulation results shed light also on the mechanism akin to associative/nonassociative reaction transitions.

Funder

Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3