Sub-gap Fano resonances in a topological superconducting wire with on-site Coulomb interactions

Author:

Stefański PiotrORCID

Abstract

Abstract We consider theoretically a 1D-semiconducting wire with strong Rashba interaction in proximity with s-wave superconductor, driven into topological phase by external magnetic field. Additionally, we take into account on-site Coulomb interactions inside the wire. The system is modelled by a tight binding Hamiltonian with Rashba hopping term and induced s-wave superconductivity. Calculations are performed utilizing recursive Green’s function method, and Coulomb interactions are treated selfconsistently within Hubbard I approximation. For the Hubbard levels residing within p-wave superconducting gap, particle–hole symmetric four-resonance structure develops in the density of states, apart from Majorana resonance. One pair of particle–hole symmetric resonances is created by the discrete II-Hubbard levels of the particular site, and the second pair of Hubbard sub-bands originates from recursive summation over the sites of the wire. Quantum interference between both types of pairs of states creates in-gap charge-conjugated Fano resonances with opposite asymmetry factors. We demonstrate that when quantum interference is dominated by two-particle tunneling, the Majorana resonance is strongly diminished, while it is not altered when single-particle tunneling dominates in interference process. We also discuss some consequences for experimental distinction of true Majorana states, and show that on-site Coulomb interactions support the appearance of topological phase.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum dot detects Majorana modes of both chiralities;Journal of Magnetism and Magnetic Materials;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3