Topological spin crystals by itinerant frustration

Author:

Hayami SatoruORCID,Motome YukitoshiORCID

Abstract

Abstract Spin textures with nontrivial topology, such as vortices and skyrmions, have attracted attention as a source of unconventional magnetic, transport, and optical phenomena. Recently, a new generation of topological spin textures has been extensively studied in itinerant magnets; in contrast to the conventional ones induced, e.g., by the Dzyaloshinskii–Moriya interaction in noncentrosymmetric systems, they are characterized by extremely short magnetic periods and stable even in centrosymmetric systems. Here we review such new types of topological spin textures with particular emphasis on their stabilization mechanism. Focusing on the interplay between charge and spin degrees of freedom in itinerant electron systems, we show that itinerant frustration, which is the competition among electron-mediated interactions, plays a central role in stabilizing a variety of topological spin crystals including a skyrmion crystal with unconventional high skyrmion number, meron crystals, and hedgehog crystals. We also show that the essential ingredients in the itinerant frustration are represented by bilinear and biquadratic spin interactions in momentum space. This perspective not only provides a unified understanding of the unconventional topological spin crystals but also stimulates further exploration of exotic topological phenomena in itinerant magnets.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Precursory Research for Embryonic Science and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3