Abstract
Abstract
At ambient conditions, alkali metal cesium (Cs) owns a body-centered cubic phase, and this phase will transform to a face-centered cubic (fcc) phase at a pressure of 2.3 GPa. Under stronger compression, Cs will transform to oC84, tI4, oC16, and double hexagonal close-packed (dhcp) phases in sequence. Here, using first-principles structure searching prediction and total-energy calculation, we report that the Cs will re-transform to the fcc phase as the post-dhcp phase above 180 GPa. The transition state calculations suggest that the phase transition takes place by overcoming an energy barrier (144 meV/atom at 200 GPa) and finishes within a volume collapse of 0.3%. The electronic states at Fermi level are derived mainly from d electrons and there is a large overlap between inner core electrons, making the high-pressure fcc Cs distinguished from the first one at low pressure. The same phase transition also occurs in potassium and rubidium but with higher pressures.
Funder
The Fundamental Research Funds of the Central Universities
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献