Anomalous hybridization complementation effect on phonon transport in heterogeneous nanowire cross junction

Author:

Ma DengkeORCID,Zhao YunshanORCID,Zhang LifaORCID

Abstract

Abstract Controlling phonon transport via its wave nature in nanostructures can achieve unique properties for various applications. In this paper, thermal conductivity of heterogeneous nano cross junction (hetero-NCJ) is studied through molecular dynamics simulation. It is found that decreasing or increasing the atomic mass of four side wires (SWs) severed as resonators, thermal conductivity of hetero-NCJ is enhanced, which is larger than that of homogeneous NCJ (homo-NCJ). Interestingly, by setting two SWs with larger atomic mass and other two SWs with smaller atomic mass, thermal conductivity of hetero-NCJ is abnormally decreased, which is even smaller than that of homo-NCJ. After further non-equilibrium Green’s function calculations, it is demonstrated that origin of increase is attributed to the hybridization broken induced by unidirectional shift of resonant modes. However, the decrease in thermal conductivity originates from hybridization complementation induced by bidirectional shift of resonant modes, which synergistically blocks phonon transport. This work provides a mechanism for further strengthening resonant hybridization effect and manipulating thermal transport.

Funder

Postdoctoral Research Funding Program of Jiangsu

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3