Proton dynamics in superprotonic Rb3H(SeO4)2 crystal by broadband dielectric spectroscopy

Author:

Ławniczak PawełORCID,Petzelt Jan,Bovtun Viktor,Savinov Maxim,Kempa Martin,Nuzhnyy DmitryORCID,Pawłowski Antoni

Abstract

Abstract Broadband dielectric and AC conductivity spectra (1 Hz to 1 THz) of the superprotonic single crystal Rb3H(SeO4)2 (RHSe) along the c axis were studied in a wide temperature range 10 K < T < 475 K that covers the ferroelastic (T < 453 K) and superprotonic (T > 453 K) phases. A contribution of the interfacial electrode polarization layers was separated from the bulk electrical properties and the bulk DC conductivity was evaluated above room temperature. The phase transition to the superprotonic phase was shown to be connected with the steep but almost continuous increase in bulk DC conductivity, and with giant permittivity effects due to the enhanced bulk proton hopping and interfacial electrode polarization layers. The AC conductivity scaling analysis confirms validity of the first universality above room temperature. At low temperatures, although the conductivity was low, the frequency dependence of dielectric loss indicates no clear evidence of the nearly constant loss effect, so-called second universality. The bulk (intrinsic) dielectric properties, AC and DC conductivity of the RHSe crystal at frequencies up to 1 GHz are shown to be caused by the thermally activated proton hopping. The increase of the AC conductivity above 100 GHz could be assigned to the low-frequency wing of proton vibrational modes.

Funder

Narodowe Centrum Nauki

Czech Academy of Sciences

Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the CzechMinistry of Education, Youth and Sports

Czech Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3