Abstract
Abstract
Luttinger semimetals represent materials with strong spin–orbit coupling, harboring doubly-degenerate quadratic band touchings at the Brillouin zone center. In the presence of Coulomb interactions, such a system exhibits a non-Fermi liquid phase [dubbed as the Luttinger–Abrikosov–Beneslavskii (LAB) phase], at low temperatures and zero doping. However, a clear experimental evidence of this emergent state remains elusive to this date. Hence, we focus on extracting the Raman response as a complementary experimental signature. At frequencies much larger than the temperature, the Raman response exhibits a power-law behavior, which can be verified experimentally. On the other hand, at lower frequencies, the Raman response displays a quasi-elastic peak. We also compute the ratio of the shear viscosity and the entropy density, and the value obtained is a consequence of the hyperscaling violation that emerges in the LAB phase.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献