High-pressure monoclinic–monoclinic transition in fergusonite-type HoNbO4

Author:

Garg A BORCID,Errandonea DORCID,Rodríguez-Hernández P,Muñoz A

Abstract

Abstract In this paper we perform a high-pressure (HP) study of fergusonite-type HoNbO4. Powder x-ray diffraction experiments and ab initio density-functional theory (DFT) simulations provide evidence of a phase transition at 18.9(1.1) GPa from the monoclinic fergusonite-type structure (space group I2/a) to another monoclinic polymorph described by space group P21/c. The phase transition is reversible and the HP structural behavior is different than the one previously observed in related niobates. The HP phase remains stable up to 29 GPa. The observed transition involves a change in the Nb coordination number from 4 to 6, and it is driven by mechanical instabilities. We have determined the pressure dependence of unit-cell parameters of both phases and calculated their room-temperature equation of state. For the fergusonite-phase we have also obtained the isothermal compressibility tensor. In addition to the HP studies, we report ambient-pressure Raman and infrared (IR) spectroscopy measurements. We have been able to identify all the active modes of fergusonite-type HoNbO4, which have been assigned based upon DFT calculations. These simulations also provide the elastic constants of the different structures and the pressure dependence of the Raman and IR modes of the two phases of HoNbO4. According to ab initio calculations, the reported phase transition is related to a mechanical instability and a phonon softening.

Funder

Generalitat Valenciana

Spanish Ministry of Science, Innovation and Universities

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3