Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method

Author:

HAN 韩 Weiwei 伟伟,SUN 孙 Duixiong 对兄,ZHANG 张 Guoding 国鼎,WANG 王 Honglin 鸿麟,GUO 郭 Kai 凯,ZHANG 张 Yuzhuo 宇卓,WANG 王 Haoliang 浩亮,ZHANG 张 Denghong 登红,DONG 董 Chenzhong 晨钟,SU 苏 Maogen 茂根

Abstract

Abstract This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number of samples, namely, SC-assisted CF-LIBS. Al alloy standard samples, divided into calibration and test samples, were applied to validate the proposed method. SC was built based on the characteristic line of Pb and Cr in the calibration sample, and the contents of Pb and Cr in the test sample were calculated with relative errors of 6% and 4%, respectively. SC built using Cr with multiple characteristic lines yielded better calculation results. The relative contents of ten elements in the test sample were calculated using CF-LIBS. Subsequently, the SC-assisted CF-LIBS was executed, with the majority of the calculation relative errors falling within the range of 2%–5%. Finally, the Al and Na contents of the Al alloy were predicted. The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples. Furthermore, this quantitative analysis method was successfully applied to soil and Astragalus samples, realizing an accurate calculation of the contents of multiple elements. Thus, it is important to advance the LIBS quantitative analysis and its related applications.

Funder

Science and Technology Project of Gansu Province

Industrial Support Project of Gansu Province

Major Science and Technology Projects in Gansu Province

Central Leading Local Science and Technology Development Fund Projects

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3