Author:
LI Jing,LU Haiquan,WANG Qi,LI Guojian,YAO Shuiliang,WU Zuliang
Abstract
Abstract
Ultrafine particles (UFPs) are harmful to human beings, and their effective removal from the environment is an urgent necessity. In this study, a dielectric barrier discharge (DBD) reactor packed with porous alumina (PA) balls driven by a pulse power supply was developed to remove the UFPs (ranging from 20 to 100 nm) from the exhaust gases of kerosene combustion. Five types of DBD reactors were established to evaluate the effect of plasma catalysis on the removal efficiency of UFPs. The influences of gas flow rate, peak voltage and pulse frequency of different reactors on UFPs removal were investigated. It was found that a high total UFP removal of 91.4% can be achieved in the DBD reactor entirely packed with PA balls. The results can be attributed to the enhanced charge effect of the UFPs with PA balls in the discharge space. The UFP removals by diffusion deposition and electrostatic attraction were further calculated, indicating that particle charging is vital to achieve high removal efficiency for UFPs.
Funder
Open Foundation of Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献