Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core

Author:

CUI Ruilin,ZHANG Tianliang,YUAN Qian,HE Feng,HAN Ruoyu,OUYANG JitingORCID

Abstract

Abstract In this work, we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core. Spatially resolved spectroscopy and emission intensity of argon atom and ion lines were measured via local optical emission spectroscopy, and electron density was measured experimentally by an RF-compensated Langmuir probe. The relation between the emission intensity and the electron density was obtained and the wavenumbers of helicon and ‘Trivelpiece-Gould’ (TG) waves were calculated by solving the dispersion relation in wave modes. The results show that at least two distinct wave coupled modes appear in argon helicon plasma at increasing RF power, i.e. blue core (or BC) mode with a significant bright core of blue lights and a normal wave (NW) mode without blue core. The emission intensity of atom line 750.5 nm (I ArI750.5nm) is related to the electron density and tends to be saturated in wave coupled modes due to the neutral depletion, while the intensity of ion line 480.6 nm (I ArII480.6nm) is a function of the electron density and temperature, and increases dramatically as the RF power is increased. Theoretical analysis shows that TG waves are strongly damped at the plasma edge in NW and/or BC modes, while helicon waves are the dominant mechanism of power deposition or central heating of electrons in both modes. The formation of BC column mainly depends on the enhanced central electron heating by helicon waves rather than TG waves since the excitation of TG waves would be suppressed in this special anti-resonance region.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3