Response of the low-pressure hot-filament discharge plasma to a positively biased auxiliary disk electrode

Author:

CHOUDHARY Mangilal,SREEJITH Poyyeri Kunnath

Abstract

Abstract In a steady-state plasma, the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges. The balance between the loss rate and ionization rate of plasma particles (electrons and ions) maintains quasi-neutrality of the bulk plasma. In the presence of an external perturbation, it tries to retain its quasi-neutrality condition. In this work, we studied how the properties of bulk plasma are affected by an external DC potential perturbation. An auxiliary biased metal disk electrode was used to introduce a potential perturbation to the plasma medium. A single Langmuir probe and an emissive probe, placed in the line of the discharge axis, were used for the characterization of the bulk plasma. It is observed that only positive bias to the auxiliary metal disk increases the plasma potential, electron temperature, and plasma density but these plasma parameters remain unaltered when the disk is biased with a negative potential with respect to plasma potential. The observed plasma parameters for two different-sized, positively as well as negatively biased, metal disks are compared and found inconsistent with the existing theoretical model at large positive bias voltages. The role of the primary energetic electrons population in determining the plasma parameters is discussed. The experimentally observed results are qualitatively explained on the basis of electrostatic confinement arising due to the loss of electrons to a biased metal disk electrode.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3