Design and experimental results of a 28 GHz, 400 kW gyrotron for electron cyclotron resonance heating

Author:

SUN Dimin,HUANG Qili,HU LinlinORCID,HU Peng,ZHUO Tingting,MA Guowu,CHEN Hongbin,MA Hongge

Abstract

Abstract A high-power 28 GHz gyrotron has been successfully developed at the Institute of Applied Electronics, China Academy of Engineering Physics. This gyrotron was designed for electron cyclotron resonance heating (ECRH) in the spherical tokamak XL-50. A diode magnetron injection gun was designed to produce the required gyrating electron beam. The gyrotron operates in the TE8,3 mode in a cylindrical open cavity. An internal quasi-optical mode converter was designed to convert the operating mode into a fundamental Gaussian wave beam and separate the spent electron beam from the outgoing microwave power. A tube has been built and successfully tested. The operational frequency of the tube is 28.1 GHz. For beam parameters at an accelerating voltage of 71 kV and beam current of 16 A, the gyrotron has delivered an output power of 400 kW, with a pulse length of 5 s. The output efficiency is about 50% with a single-stage depressed collector. The gyrotron has been installed on the XL-50 and has played an important role in the ECRH experiments.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3