Author:
LI Yuying,XU Jiacheng,ZHANG Chunle,YAO Shuiliang,LI Jing,WU Zuliang,GAO Erhao,ZHU Jiali
Abstract
Abstract
The effect of N2 discharge products on cyclohexane degradation over a MnO2/γ-Al2O3 catalyst has been evaluated by feeding N2 discharge products to the catalyst using a specially designed dielectric barrier discharge reactor. At a reaction temperature of 100 °C, the cyclohexane conversion increased from 2.46% (without N2 discharge products) to 26.3% (with N2 discharge products). N- and O-containing by-product (3, 4-dehydroproline) was found on the catalyst surface using gas chromatograph-mass spectrometry identification, in which C=N–C and C=N–H bonds were also confirmed from x-ray photoelectron spectroscopy analysis results. Operando analysis results using diffuse reflectance infrared Fourier transform spectroscopy revealed that N atoms can react with surface H2O possibly to NH and OH reactive species that have reactivities to promote CO oxidation to CO2. The mechanism of N-atom-driven cyclohexane degradation to CO and CO2 is proposed.
Funder
Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China
National Natural Science Foundation of China
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献