Detection and quantification of Pb and Cr in oysters using laser-induced breakdown spectroscopy

Author:

YAN Qingxia,TIAN Ye,LI Ying,LIN Hong,JIA Ziwen,LU Yuan,YU Jin,SUN Chen,BAI Xueshi,DETALLE Vincent

Abstract

Abstract The quantitative determination of heavy metals in aquatic products is of great importance for food security issues. Laser-induced breakdown spectroscopy (LIBS) has been used in a variety of foodstuff analysis, but is still limited by its low sensitivity when targeting trace heavy metals. In this work, we compare three sample enrichment methods, namely drying, carbonization, and ashing, for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples. The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C, H, N and O; meanwhile, the signals of the metallic elements such as Cu, Pb, Sr, Ca, Cr and Mg are enhanced by 3–6 times after carbonization, and further enhanced by 5–9 times after ashing. Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones, but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed. This condition favors the detection of trace elements. According to the calibration curves with univariate and multivariate analysis, the ashing method is considered to be the best choice. The limits of detection of the ashing method are 0.52 mg kg−1 for Pb and 0.08 mg kg−1 for Cr, which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard. This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Provincial Key Research and Development Program of Shandong, China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3