Turbulent boundary layer control with DBD plasma actuators

Author:

LI Yueqiang,WU Bin,GAO Chao,ZHENG Haibo,WANG Yushuai,YAN Rihua

Abstract

Abstract The flat-plate turbulent boundary layer at Re τ = 1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge (DBD) plasma actuators. Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements, a novel convenient method of local drag reduction (DR) measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer. We analyze the premise of using the method, and the maximum effective measurement range of −73.1% < DR < 42.2% is obtained according to the experimental environment in this work. The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes. The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators. For the spanwise position in between, the streamwise distribution of the local DR is very dependent on the voltage. The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline, and the amount of reduction is comparable to the absolute values of the local DR. Compared with previous results, we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks.

Funder

The National Science Fund for Distinguished Young Scholars

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3