Investigation of electron cyclotron wave absorption and current drive in CFETR hybrid scenario plasmas

Author:

WANG Hanlin,WANG Xiaojie,ZHANG Chao,TANG Yunying,LIU Fukun

Abstract

Abstract The investigation of electron cyclotron (EC) wave absorption and current drive has been performed for the China Fusion Engineering Test Reactor (CFETR) hybrid scenarios using the TORAY code. To achieve the physics goal of the EC system in CFETR, a total of four wave frequency values and nine locations of launching antennas have been considered, and the injection poloidal and toroidal angles have been scanned systematically. The electron cyclotron current drive (ECCD) efficiency of the 170 GHz EC system is quite low due to the wave-particle interactions being located at the low-field side. To optimize the ECCD efficiency, the wave frequency is increased up to 221–250 GHz, which leads to the power being deposited at the high-field side. The off-axis ECCD efficiency can be significantly enhanced by launching EC waves from the top window and injecting them towards the high-field side. The optimized ECCD efficiency at ρ = 0.32 and at ρ = 0.4 is 2.9 and 2.2 times that of 170 GHz, respectively.

Funder

Comprehensive Research Facility for Fusion Technology Program of China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3