Abstract
Abstract
For collisional merging field-reversed configurations (FRCs), it is desired to have both FRCs tuned to be approximately the same, as well as to optimize each FRC to have high temperature and high translation speed so as to retain most of the equilibrium flux after traveling a distance to the middle plane for merging. The present study reports the experimental study of a single-translated FRC in the KMAX-FRC device with various diagnostics, including a triple probe, a bolometer, several magnetic probe arrays, and a novel 2D internal magnetic probe array. According to the measurements conducted in the present study, a maximum toroidal magnetic field equal to ∼1/3 of the external magnetic field inside the FRC separatrix radius is observed, and the typical parameters of a single-translated FRC near the device’s mid-plane are n
e ∼ (2–4)×1019 m−3, T
e ∼ 8 eV, T
i ∼ 5 eV, r
s ∼ 0.2 m, l
s ∼ 0.6 m and ϕ
p(RR) ∼ 0.2 mWb. The 2D magnetic topology measurement revealed, for the first time, the time evolution of the overall internal magnetic fields of a single-translated FRC, and an optimized operation regime is given in the paper.
Funder
National Natural Science Foundation of China
The National Key R&D Program of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献