Non-invasive optical characterization and estimation of Zn porosity in gas tungsten arc welding of Fe–Al joints using CR model and OES measurements

Author:

SRIKAR SaiORCID,KUMAR Tinku,KIRAN Degala Venkata,GANGWAR Reetesh KumarORCID

Abstract

Abstract In this study, we employed a non-invasive approach based on the collisional radiative (CR) model and optical emission spectroscopy (OES) measurements for the characterization of gas tungsten arc welding (GTAW) discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints. The OES measurements were recorded as a function of weld current, welding speed, and input waveform. The OES measurements revealed significant line emissions from Zn-I in 460–640 nm and Ar-I in 680–800 nm wavelength ranges in all experimental settings. The OES coupled CR model approach for Zn-I line emission enabled the simultaneous determination of both essential discharge parameters i.e. electron temperature and electron density. Further, these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-I emission lines using Ar as actinometer gas. The OES-actinometry results were in good agreement with porosity data derived from an independent approach, i.e. x-ray radiography images. The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints.

Funder

Science and Engineering Research Board

Indian Institute of Technology Tirupati

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3