A dual-route optical emission spectroscopy diagnostic with wide spectral range and high wavelength resolution on HL-2A tokamak

Author:

Chen YueORCID,Gao Jikun,Long TingORCID,Nie Lin,Gao Jinming,Ma Yao,Huang Yuan,Tian Wenjing,Liu Yanmin,Zhu Xiaodong,Zhuang Ge,Zhong Wulyu,Xu Min

Abstract

Abstract A dual-route optical emission spectroscopy (D-OES) diagnostic is newly developed to monitor the optical emission from X-point plasma region on the HL-2A tokamak. This diagnostic is composed of imaging system, beam splitting system for dual-route measurements, fiber bundles, spectrometer system, control and acquisition system. One route is used to obtain wide-spectral-range spectra, and the other route is used to acquire high-wavelength-resolution line shapes. The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm (@200-1000 nm). The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm (@200-660 nm). The spatial resolution of each route of D-OES is about 4 cm with 11 channels. The temporal resolution is 16 ms at maximum in the single-channel mode. Wide-range spectra (containing Balmer series and Fulcher band) and highly resolved H_α line shapes are obtained by D-OES in the hydrogen glow discharge in the lab. D-OES measurements are carried out in the high-density deuterium experiments of HL-2A. The electron density n_e and deuterium temperature T_D in the X-point MARFE region are derived simultaneously by fitting the measured D_α shape. The density n_e is observed to increase from ~8.7×10^18 m^(-3) to ~7.8×10^19 m^(-3) and the temperature T_D drops from ~14.4 eV to ~2.3 eV after the onset of MARFE in the discharge #38260.

Funder

Ministry of Science and Technology of the People's Republic of China

Science and Technology Department of Sichuan Province

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3